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ABSTRACT TILe structure of infrared cirrus clouds is analyzed with

Lal)lacian pyramid transforms, a tbrm of non-orthogonal wavelets. Pyra-
mid and wavelet transforms provide a means to decompose ixnages into

their spatial frequency components such that all spatial scales are treated
in an equivalent manner. The multiscale transform analysis is appfied to
lt/AS 100/tin mal)s of cirrus emission in the north Galactic pole region
to extract features on different scales. In the mal)s we identify lilaments,

fragments and clumps by separating all connected regions. These struc-
tures are analyzed with respect to their Hausdorff dimension for evidence

of the scaring relationships in the cirrus clouds.

INTRODUCTION

ht general, interstellar clouds appear inhomogeneous with features Oil different
scale size del)ending on the spatial resohttion of the telescope and the tracer used
to t)robe the structure. This structure results from a fraginentation process that
is not well understood and cannot be easily modeled because of the non-linear

nature of the hydrodynamic equations which describe the cloud evohttion. The
tormatiou and evohttion of interstellar clouds is governed by a variety of forces

inchtding gravity, magnetic tields, rotation, thermal pressure, turbulence, and
systematic motions. In addition discrete stellar sources inject energy into the
clouds in the form of winds and shocks, producing systematic and turbulent

motion. A highly "chmtt)y" or fragmented structure may retlect gravitational
fragmentation or the presence of turbulence resulting from the cascade and redis-
tribution of energy injected on different scales. In contrast, a highly tilamentary

structure might result from ordered magnetic tields.
To study the structure an(l (lynamics of interstellar clouds observers have

mapl)ed them on diiFerent scales and to ditferent degrees, maildy with the iso-
topes of CO, (:S, and the 100 att(l 60 pm infi'ared dust emission, each of which
traces a difl'erent aspect of the density and mass distribution. Interpreting these
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mal)s has proven to be more complicated because one does not know a priori

what kind of features to extract and exactly how the distribution of features,
their sizes and number, relate to the dynamics of tile cloud.

To interpret the mal)s one needs some method to extract structural features

and determine their number, size, distribution, mass, and energy content. Sev-

eral apl)roaches have been appfied and discussed in the fiterature including a
search for connected objects (Dickman, Horvath, and Margulis 1990; Falgarone,
l)hillil)s, and Walker 1991), the autocorrelation function, the structure function

(Kleiner and Dickman 1984 and 1985), an iterative fitting procedure assuming
Gaussian-shaped clumps (Stutzki and Gusten 1990) and structure tree analysis
(Houlahan and Scalo 1990 and 1992). Recently we suggested that Laplacian

t)yramid (multiscale) transforms (LI'T) are more suitable for deternfining the
structure of interstellar clouds (Langer, Wilson, and Anderson 1993).

The best known example of the multiscale transform is the wavelet trans-

form (Grossman and Morlet 1987; see also the reviews by Daubechies 1992;

I"arge 1992). Multiscale transforms provide a mathematically consistent way
to extract structural COml)onents and real) properties from astronomical im-

ages. The multiscale transform has been characterized as a generalization of
the l"ourier Transform which is capable of tel)resenting a function in terms of
spatial and frequency localization. The localized structures at different scales

are easier to identify in the transformed space than in the original (x, y) space.
The wavelet transform is well suited to provide detailed information and deep
insight into structure. Orthonormal wavelets have been used to extract particu-
lar features from complex astronomicM data, including: galaxy counts (Slezak,
Bijaoui, and Mars 1990; Martinez, Paredes, and Saar 1993); stellar photometry
in globular clusters (Auriere and Coupinot 1989); 1_CO spectral data of the
L1551 outt[ow ((;ill and Henricksen 1990); and, 1)hotometric analysis of galaxies
(Coupinot et al. 1992).

Here we apply a multiscale transform analysis of infrared cirrus clouds in

the North Polar region using the IRAS Sky Survey Atlas (Wheelock et. al.
199,1) plates and analyze the fractal structure and morl)hology of the clouds.
Infi'ared 60 and 100 trot II{AS maps have been analyzed for scale-dependent
nlorphology by a number of authors using algorithms to characterize the feat ures
which rely on connecting contours in the original (.c, y) intensity maps. Bazell

and D6sert (1988) analyzed the fractal structure of interstellar cirrus using the
Skytlux plates for three regions: one above and one below the plane (b = +23 °
and -1,1 °) and a third region at b = -40 ° containing two well known liigh-
latitude MBM clouds. Dickman, Horvath, and Margulis (1990)analyzed Ii(AS
images of iive molecular cloud complexes (including the well known regions of
Chameleon, p Oph, and Taurus). Both studies found a highly fractal structure
lot the clouds and concluded that the clouds had a highly turbule_tt structure.

However, they dilfer in the behavior of the scaling front region to region, which
might not be surprising considering that one concentrates on molecular and the
other diffuse regions. Our multiscale analysis of cirrus emission reveals a more
complex structure than either of these previous studies.
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MULTISCALE TRANSFORMS

First, we review the various multiscale transforms (Pyramids and Wavelets)

and compare them to Fourier Transforms. Laplacian pyramid transforms l)re-
ceded and spurred tile recent interest by mattlematieians ill tile more formalized
orthogonal wavelets. Ill practice the orthogonal wavelets tlave proven useful pri-
marily in image data compression, while tile Laplacian pyramid has remained
more useful for carrying out a variety of image analysis tasks.

Fourier Transform

A Fourier Transform decomposes a function f(x) into a linear composition of
Fourier vectors, whose basis functions are sines attd cosines, defined by their

Fourier coefficients,

f(k) = (27r) -U2./f(x)eik_'dx. (1)

Unfortunately e ik_" oscillates forever and the information content of f(x) is de-

localized among all the spectral coefficients f(k). l/egions of f(x) tilat vary

sharply - for examl)le a delta function - have their information spread among
all of k space. Such transtbrm properties are not very useful for real astronomical
images which contain a great deal of structure.

One approach to achieve localization is to use a window to isolate the t)or-
tion of the frequency or spatial scale of interest. Windowed transforms can also

be applied sequentially to recover all of the function, however such transforms
use fixed window size and thus do not analyze the function at all scales. An

exalnple of a windowed transtorm is the (labor transforni,

(;"(x) = (.m,) ('2)

which uses a Gaussian window. The real part of the transform of the (labor
function, Re(;,_ is shown ill Figure 1 tbr three values of co; note that tile (labor
transform has a fixed window size and that the transformed G oscillate within

a fixed envelope.

Wavelet Transform

Tile wavelet transform localizes information in space and scale and the (lecom-

I)osition is done by translation and dilation of a single "Parent" function, tile

analyzing wavelet. The wavelet transform is defined by

F7 (a,b) = lal f(x)g{(x - b)la)dx (3)
IX)

where the factor a covers different ranges in scale (fl'equency) and b moves the

localization center (position or time). The wavelet transform separates data or
functions into different spatial components and analyzes each component with
a rcsohition to match its scale. 'rile wavelet transform function nlust have the

property that its nlean is zero over x,

= 0. (4)
0,3
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HGURE 1 The functions g,b and Re(_;_ob for three values of a and ¢0 (b =
0). The Gabor transform has a fixed window size in contrast to the wavelet

transform's tlexible window (Martinez et ",d. 1993).

10

One of the best known examples of a wavelet transform in astronomy is the Marr
(or "Mexican Hat") wavelet, which in one dimension has the form,

: (1 - where : = (x - (s)

The transformed function g,b is shown in l"igure 1 for three values of, (assuming
b = 0) where one can see that the Marr wavelet has a tlexible window size.

Wavelets have the useful property that they preserve scaling behavior and are

sensitive to signal variations but not to constant behavior. They also provide
a useful descril)tion of turbulence because they retain information about the

spatial structure of the llow (c.f. the review by l"arge 1992).

Discrete Wavelet Transform

There is a discrete wavelet transform (DWT) analogous to the discrete Fourier
transform (DFT), both of which are rotations in function space, but take an
inl)ut space into ditferent domains. For the DFT the basis functions are unit

vectors or Dirac delta functions (in the continuum limit). For the DFT the
domain has sine and cosine basis functions, while for the DWT they are locafized
in space. The best known examples of the DWT use the Daubechies basis

functions (Daubechies 1992). We do not have space to review the DWT (see
Press et al. 1993) but point out that the transform is a matrix whose odd and

even rows perform ditferent convolutions: the odd rows generate components of

the data convolved with filter coetlicients and perform a moving average with
the smoothing filter H; the even rows perlbrm a convolution with a filter L

which represents the detailed information in the data. The DWT is al)pfied
hierarchically to the data vector (i.e., lirst to the full length data N, then to
the "smooth" vector of length N/2, etc.) ultimately producing a set of wavelet
coetficients that represent the smoothed information on the largest scale and
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Scale invariant filter bank: Filter responses, Fn(k) = F0(2"k), on

detailed information on scales differing by factors of two. Specific examples are

given by Daubechies (1992) and Press et al. (1993).

Pyramid Transforms

Pyramid transforms preceded and spurred the recent interest by mathen_aticians
in tile more formalized orthogonal wavelets. However, one of the major difficul-
ties with the orthogonal wavelets is that, while their basis functions display shift
and scale invariant l)roperties, the coefficients in these expansions do not (see

Strang 19_89; Simoncelli et al. 1992). The fact that the power within a given
scale is not invariant to translations of the input should be enough to make one

war)'. In addition, when implemented as separable filters, the orthogonal wavelet
transform creates three highly anisotropic bandl)ass COlnponents at each scale,
which have no simple relationship to underlying i)hysical properties.

Pyramid transforms provide a means to decompose images into their spatial
frequency components such that all spatial scales are treated in an equivalent
manner. The concel)ts arc equally applicable to data of any dimension, where
each axis represents some continuous l)hysical parameter such as spectral wave-
length, time, or in tim case of images vertical and horizontal lengths or angular

displacements. An intuitive grasp of the idea can be obtained in one dimension
by considering tile illustration in Figure 2. The horizontal axis ret)resents a pa-
rameter such as space and the vertical axis spatial frequency. If we consider a
signal S(:c) that has been bandpass limited by a fixed amount, then it Call rep-
resented by a uniform sequence of samples ,5'(xi), as set by the Nyquist sampling
theorem, with no loss of information. Now consider passing the bignal through a
bank of filters that are scaled copies of one another, such that l';_(k) = l'_)(2"k),
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where the scaring by factors of two is chosen for convenience. The output of
each filter treats the signal in a scale invariant fashion because of the scaring
relationship between the filters. The outputs of each filter must be sampled at
a rate that is proportional to the corresponding bandwidth, hence each band is
sampled at a rate that differs from its neighbors by a factor of two, as illustrated
in f'igure 2. This method of signal decomposition is the basis of all scale invari-

ant multiresolution representations such as Pyramids and Wavelets. The signal

processing community have labeled them as a special class of subband encoding
schemes.

Tile generality of this form of signal analysis is best illustrated by noting
that tile human visual and auditory systems utifize it. The scale invariant nature

of many physical processes is what makes these representations inq)ortant. The
statistics of the signals and the forms of the structures produced by these filters

provide measures of how underlying physical processes change with scale. The
coefficients in these representations are much more statistically independent of
one another than they are in tile original data formats, which leads to a rich set

of localized descriptors of images and better data compression for storage.

The number of such decompositions is large since there are many filter
designs whose scaled filter banks will cover the frequency range of interest with
sufficient density to prevent loss of information. This means there is a multitude
of possible multiscale transforms unfike the Fourier transform. The choice of

which filter to use is determined by factors such as efficiency of computation,
signal-to-noise ratios, information storage and the type of data analysis one
desires to perform. When one goes into higher dimensional spaces the choices for
tile shape of tile filter become increasingly more tlcxible and hence increase the
number of possible transforms. The orthonormal wavelets, which have recently
received a lot of recognition, are a particular subset of the multiscale transforms.
These provide critically sampled representations with minimal storage, as well as
having some nice mathematical properties, but the constraint of orthogonality
leads to filter designs that are not necessarily the best for many applications.
There are a number of overcomplete transforms, such as the Laplacian pyramid,
based on circularly symmetric filters, oriented pyramids, which have "wavelet"-

like filters, and a recent new class with a property called "shiftabihty" (cf. Strang
1989, Simoncelli et al. 1992).

The Laplacian pyramids are best understood as the outputs of a bank of
scaled circularly symnmtric, bandl)ass spatial frequency filters, with center fre-

(tuencies k,, = ko/2 '_ and rougldy octave bandwidths. The simple variant used
here is ('ailed an FSD (Filter, Subtract, and Decimate) pyramid (cf. Vall der Wal
1991). Starting with the original image, designated as Go(x, y), the following
rules are applied recursively to create a sequence of lowpass images (or Gaussian

levels) (;,,(x, y) and bandpass (or Laplacian levels) L,(x, y):

(),_+1 _- H * (J'n {Filter} (6)

= - (,,,+_ {Subtract} (7)

(_'n+l _- {Decimate} dn+l (S)
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The filter operation H • G,_ involves convolving the image G_ with a lowpass
filter H. A separable filter, H(Z,B) = h(x)h(9), was used in this work, where
we adopted a five tap filter for h(z) having the tap values 1/16, 1/4, 3/8, 1/,1,

1/16, which produces an approximately circularly symmetric filter in the spatial
frequency domain. The Laplacian components, Ln, are computed by subtract-
ing the low pass version from the unblurred one at each scale. This operation
is equivalent to filtering with a "Mexican hat" or difference of a Gaussian-like

shaped kernal. The blurred version, G,_, is then subsampled by throwing away
every other pixel and row, which is traditionally called "decimation." Decima-
tion is justified because the lowpass filter reduces the spatial fi'equency content
such that little aliasing is introduced by this process. Since this reduces the
number of pixel values by four at each stage in a two-dimensional real), the com-

putation of all the levels L1 to LN takes only one third the time and resources
to compute L0. Typically the finn level N is set by stopping the process when
the smallest dimension of the array G,,+I(x, 9) would be no smaller than eight.

Mathematically, the set of values L_(x, y) for n = 0 to N plus GN+I, constitute
the components of an overcomplete non-orthogonal wavelet decomposition of
the original image Go. The bandpass components show less than two percent
anisotropic response to spatial frequency orientation and less than five percent
to translation of the input image. This operation is a computationally efficient,
basic wavelet transform that has a relationship to some simple multiscale statis-
tics. The G_ are mean values computed over regions that increase in size by
factors of two and the Ln provide the local deviations from these multiscale
inean values.

IRAS IMAGES OF THE NORTH POLAR CIRRUS

To analyze the structure of cirrus emission we have chosen a region in the north
Galactic pole (declination 90 ° at map center) in order to minimize the line-
of-sight confusion. We obtained 60 and 100 #m images of the North Polar
Cirrus from the ISSA data measuring 5 ° on a side with pixels of 1.5_xl.5 _,
although the actual resolution of the images is closer to 4 _ (the IRAS beam size at

100 #m). Figure 3 is a contour plot of the 100 ttm image and shows the highly
complex filamentary and globular nature of the emission. From the 100 and 60

#m images one can calculate a dust color temperature and opacity assuming
a one component model of the dust grains (cf. Langer et al. 1989). The

color temperature map is roughly uniform with a temperature of 25 K and the
temperature drops in the regions of brightest emission where the opacity is a
minimum. This behavior is well known for the 60 and 100 #m maps and is a

result of using an overly simplified grain emission model. Therefore we decided
to restrict our analysis to the 100 #m maps as the 100 #m emission arises fi'om
cooler dust, is optically thin, and thus more likely to arise uniformly fi'om all the

material along the line-of-sight. The 100 pm maps show a great deal of structure
on all scales and the variation in emission is either due to increased column

density, changing (lust grain distribution, or variations in heating sources.
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FIGURE 3 Tile 100 #m image of the North Polar Cirrus (dec = 90°,0 h is

at the top and RA goes counterclockwise with 6 h oil the left); tile axes are in
arcmin with respect to the center. Intensity units range from 2 to 16 × 10_.

RESULTS

The LPT appfied to tile 100 #m image of the North Polar Cirrus generates a
set of ampfitude maps for each of the basis functions, ranging from L0 to Ls

covering tile smallest to largest scales (1.5' to 9'), and G5 (the original image
is labeled Go). The G, are mean values computed over regions that increase
in size by factors of two and the L_ provide the local deviations from these
multiscale values. The Ln images represent the detailed information and have

equal positive and negative areas (average over tim maps is zero). G5, which has
a resolution of 48', is smooth and positive definite over tile map. There is not

room here to display the Laplacian images but examples of the transform mal)s
for CO clouds can be seen in Langer et al. (1993).

To extract the structure in the real) we assume that at each scale the features

are embedded one within tile other, or superimposed along the line-of-sight. We
define a clump or filament as a connected region of positive amplitude, that is
the zero contour boundary in the Laplacian maps. Bubbles or valleys would

correspond to connected negative regions. (These maps are better for isolating
features because of the sel)aration of different scales and the preservation of
locality in the transformed space.)

For each image we can determine the following properties of the connected
positive or negative regions:
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Perimeter = P,

Area = A,

Intensity = f O(x, y)dA,

where 4)(x, y) = amplitude of the wavelet basis function at (x, Y),

Brightness = [J0(x, y)dA]/A,

rms = J 10(*, y)V2dA.

TILe major problenL with this approach is that there are lnany features at
small scale that correspond to noise ill the maps or are on smaller scales than the
beam resolution (the pixel area is 2.25 arcmin _ while the IRAS beam is roughly

3' to ,1'). We avoid this prol)lem by only considering features whose area, A, is
greater than 16 arcmin2). Table 1 summarizes the number of distinct features
of positive alnl)litude for each of the Laplacian maps.

TABLE 1 Summary of Cirrus Features in Each LPT Basis Map

Order (AA)" Number of
(1) (t) Features
0 1.5 1,123
I 3.0 68,'1
2 6.0 252
3 12.0 81
,t 2,1.0 28
5 ,18.0 I 1

Tile wavelength of each band is approximated by the width, AA, of each high

pass filter.

Here we concentrate on only one property of tile structure analysis of the

cirrus clouds, the scale-dependent morl)hology, or fractal structure. One widely
used approach to measuring tile morphology of tile cloud structures is tile Haus-
dortf dimension (Bazell and Ddsert 1988, Dickman et al. 1990) which is the
fl'actal dimension of tile objects in tile cloud. The fractals are self-sinfilar under

scale changes and so a determination of the tlausdorff dimension, D, can help
identi[v the scale-dependent morphology of the cloud, hleally, the geometrical
structures and the scale dependence provide int'ornlation about tile forces at
work ill the cloud. D is delined as

,,11/'2 = K I :/z) (9)

where a plot of log perimeter versus log area yiehts a slope of D/2 and has

an intercept equal to -D(logK). Regular geometrical objects (circles, ellipses,
squares, etc.) all have D = 1 (i.e., the same scaling) but di[[erent intercepts
(i.e., K depends on shape). A value of D _, ,1/3 characterizes the relationship
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expectedfor Kolmogorovturbulence(incompressible,homogeneous,isotropic
turbulence);seethe discussionby Dickmanet al. Filamentarystructuresthat
scaleonly with length,ontheotherhand,haveD _ 2, as would be characteristic

of gas supported by magnetic fields in the radial direction. Figure 4 shows an
example of the plot of log(P) versus log(A) for the I = 1 image (A,k ,,_ 3'). Note

that the fit is not particularly good for large areas (A > 400 arcmin2), bbr
the small wavelengths (l = 0 and 1) the fits are dominated by the many small

features in the map (note each cross in Figure 4 can represent many clumps of
the same area and perimeter). Figure 5a plots D as a function of the I value and
shows relatively tittle variation with wavelength. The log(P)-log(A) fits for I = 4
and 5 do not have much area dependence and the average value for D in Figure 5
is about 1.45. Bazell and D_sert found a rather different average value, D _ 1.25,

for the cirrus clouds, however, there was variation within each image (see their
Figure 2). Dickman et al.'s study of 100 ttin maps of molecular regions found
D ranging from 1.2 to 1.3, similar to those found for cirrus clouds (remember
that these results use a completely different method than that discussed here to

determine the map features).
Determining the Hausdorff dimension as a function of area, in the sense of

considering several ranges of area within an l map, yields somewhat different

results. Figure 5b plots D for the l = 1 image divided up into four different
ranges. For the smallest features the Hausdorff dimension is 1.25, similar to the
result of Bazell and D6sert, but it increases with area reaching a value about 2
for the largest objects in the image. As the I = 1 map corresponds to features

that respond to a multiscale filter of about 31 (in at least one direction) the
largest features resemble thin filamentary or web-like structures. This result
suggests that the forces that control the structure at large and small scales in
the cirrus map of the north pole region are different.

DISCUSSION

D for "allthe North Polar Cirrus features ranges from 1.35 to 1.5 with an average
of 1.45 for "all the Laplacian maps. These values are larger than the average
value of 1.25 found by Bazell and D6sert in three cirrus maps, their maximum

value of 1.40 for plate 2, and the values for D(,_ 1.18 - 1.28) for 100 #m IRAS
maps of the molecular clouds studied by Dickman et al. It is not clear if the

differences are due to the choice of objects or the method to extract the map
features. We will analyze the Chameleon region in the near future to test the
latter possibility. The fi'actal nature of the cloud B5 studied with CO maps
(Langer et al.) has D ranging from 1.3 to 1.7. These differences may occur

because CO emission probes the dense interior of the cloud where the dynamics
are much more influenced by gravity and embedded sources. D for cirrus clouds

is consistent with a turbulent gas (Kolmogorov turbulence including the effects
of intermittency -- see Falgarone et al.). However, the strong dependence of D

on the area range (Figure 5b) shows that for l = 1 and 0 (the smallest scales)
D increases with increasing area reaching values about 2. This dependence
suggests that the smallest features obey a Kohnogorov scaling law (D is close
to the Bazell and D6sert value) while the largest feature at l = 0 and 1 are
filamentary-like structures. Visual inspection shows these features to consist
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of long singlefilamentsand web-likestructures. The latter are likely due to
the overlapof separatefeaturesalongthe line of sight sincethe datahaveno
velocityinformationand/orthemergingofverymanysmallscalefeatureswithin
the filters. Higherresolution100#m datais neededto test this hypothesis.
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